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Rational Ermakov systems of Fuchsian type 

C Athorne 
Depanment of Mathematics, University of Glasgow, Glasgow, UK 

Received 21 September 1990 

Abstract. We study a subclass of a class of systems of coupled nonlinear oscillator thai 
have well-behaved singularities which can be studied using an eract linearization. T h i s  
allows US to classify such systems and to isolate those with special properties. 

1. Introduction 

Ermakov systems are fourth-order, nonlinear, ordinary differential systems in two 
dependent variabies, of the form 

A subclass of such systems was first introduced in [ l ]  and the full class in [Z]. In both 
instances the chief interest lay in the existence of an invariant, now called the Lewis- 
Ray-Reid invariant, for the system ( I ) .  This invariant allows one to construct y ( t )  
from a known x ( t )  by a single integration and hence provides an implicit superposition 
law [ 3 ]  for solutions of ( I ) .  

More recently it has been shown that the system (1) can be linearized, at least 
locally [4]. The linearization is effected in two stages. Firstly, one may reduce (1) to 
the autonomous form ( w ’ = O )  provided one can solve the linear equation 

d‘x -+ w’( i ) x  = 0. 
dt’ 

Secondly, one exploits the symmetries associated with time translation and the Lewis- 
Ray-Reid invariant to reduce the order of the autonomous system to a single second- 
order equation. It is not clear why this equation should be, as it  turns out to be, linear. 

The fact that the autonomizing and linearizing transformations are local creates 
problems for the inverse procedure of reconstructing the general solution to (1). 
However, the autonomizing procedure can be viewed as a transformation to a surrogaie 
time variable living on the complex line $,e. The inverse of this procedure then consists 
in patching together the solutions defined on local coordinate patches for PIC. Further, 
away from singularities of the linearization one has local analytic expansions from 
which one may reconstruct the local solutions to ( I )  and obtain explicit local superposi- 
tion laws for solutions. Finally, the singularities of the linearized equations determine 
the nature of the singularities of the nonlinear system. One may then hope to classify 
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Ermakov systems according to their singularity structure deduced from the singularity 
structure of the linearization insofar as the singularities of linear equations are 
sufficiently well understood [SI. 

One might alternatively classify Ermakov systems according to the character 
(rational, algebraic, automorphic, etc.) of their superposition laws. 

A specific example will serve to illustrate some of the above remarks. The coupled 
Pinney equations 

( 3 )  

have been discussed in [ 6 ] ,  w'( t )  being taken to be periodic in I of period m. In this 
case the linearization consists of (2) and a family of linear second-order equations 
depending on a single parameter I, the numerical value of the Lewis-Ray-Reid 
invariant, entirely determined by initial conditions x(O), ~ ( 0 ) .  dx/dt(O) and dyldt(0).  
For all values of I the equations of this family are Fuchsian [SI. There are six singular 
poinis, two of which are fixed ai D and ui, the remaining four points varying in the 
complex plane with the value of I. The exponents of all these points are independent 
of I except at the confluences of the wandering points when their exponents jump. 
Confluence occurs in pairs and because the wandering singular points are elementary 
the equation remains Fuchsian. 

In [6] it is shown that the qualitative global behaviour of solutions to (3) can be 
deduced from that of the linearization. Specifically, stability (periodicity) of the general 
integral of the linearization implies stability (periodicity) of the set of solutions to (3) 
having the given value of I. As I changes (i.e. as the initial conditions change) one 
will see changes in the qualitative behaviour of solutions to (3). 

Following the above discussion we define a rational Ermakov system of Fuchsian 
t.vpe to be one for which f and g are rational functions of z and whose linearization 

parameter I must enter the equations in a very specific manner. The weakest excursion 
from this class will be equations which for some isolated value of I acquire an irregular 
singular point. 

The paper is ordered as follows. In section 2 we will briefly review the linearization 
procedure, of which more details are elsewhere presented [4,6]. Slightly different 
variables are employed here and we emphasize the geometric aspects of the construc- 
tion. A more systematic, algebraic derivation of the linearization has since been given 
in [7] and we demonstrate the connection between the two approaches. Section 3 
motivates the discussion of systems of Fuchsian type by showing that one can invert 
the linearization in a neighbourhood of a regular singular point without logarithms to 
obtain a movable regular singular point, without logarithms, for the nonlinear Ermakov 
system. In section 4 we derive the form o f f  and g necessary and sufficient for (1) to 
he of Fuchsian type. In view of the results of section 4, such Ermakov systems are free 
of movable essential singularities and hence satisfy a criterion introduced by Painlevt 
181. Section S is devoted to the description of rational Ermakov systems of Fuchsian 
type which have algebraic superposition laws. These are the rationalpolyhedralErmakou 
systems. 

is a one~parameier famiiy of (raiionai) Fuchsian equaiions. .ge shall see that the 
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2. Linearization 

The system (1) is linearized by first removing the terms w 2 x  and w'y from the left-hand 
sides. Let x, and x2 be any two linearly independent solutions to (2) having unit 
Wronskian, 

dx, d x  
d l  d t  

x, --x, >= 1 ( 4 )  

Then in the barred variables defined by x = x2f, y = x 2 j ,  s = x,/x2 the system becomes 

d 2 i  1 d 2 j  1 
( 5 )  

The autonomizahility of (1) depends crucially upon the fact that the right-hand sides 
are homogeneous of weight -3. 

Now we exploit the autonomy of these equations by making new dependent 
variables p = 2 f  df /ds  and 9 = 2 j  d j / d s  and using as independent variable z = 219. 
Interestingly this gives us a second-order system in p,  9 and z 

The Lewis-Ray-Reid invariant 

rewritten in the new variables, becomes an algebraic relation between p, 9 and z :  

p -  qz2= z h ( z ;  I )  (8) 

( u - ' f ( u ) - u g ( u ) )  du ( 9 )  

where 

and ( 6 )  must be supplemented by the equation relating z to s, 

Using ( 7 ) ,  the pair of equations ( 6 )  becomes a pair of independent Riccati equations, 

d 9  Z2hdp-p2  dz =4f(Z) h - - q 2  dz = 4 g ( z ) .  

Finally, the linearizing transforms p = -z2h!K' d$/dz and 9 = -hQp-' dp/dz  lead to 

It is important to note that because h = h ( z ;  I ) ,  the above is really a one-parameter 
( I )  family of linear differential equations. Further discussion of these equations using 
slightly different variables is given in [ 4 , 6 ] .  
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Equations (2) and (12) constitute the linearization up to the general integral of 
(10). In fact we may solve (10) explicitly given the general solution to (12) so that (2) 
and (12) do  constitute the full linearization o f t h e  Ermakov system (1). This fact was 
not fully appreciated in [4]. To see this, note that we may integrate the linearizing 
substitutions for p and q to obtain 

i ( s ) $ ( z )  =j(s)pp(z) = 1. ( 1 3 )  

Suppose now that we had effected the autonomizing procedure leading to ( 5 )  using a 
different linearly independent pair of solutions XI and x; to (2). The corresponding 
variable s' is a homographic transformation of s, 

a+ps s'=- 
y + s s  

for constants a, 0, y and 8 with a8 - p y  # 0. In addition, 

x( 1 )  = x;( t ) i ' (  s') y (  t )  = x X t ) j ' ( s ' )  

and 

(14) 

i ' $ ' ( z )  = j'qJ'( 2) = 1 

where $' and p' also satisfy (12). Consequently, 

$ ' ( z ) $ - ' ( z )  = p'(z)pP'(z) 5 y+ss.  

(16) 

(17) 

Thus if $, and are a pair of linearly independent solutions to the first of equations 
(12) and we define the ratio of solutions u ( r ) = $ , ( z ) $ ; ' ( z ) ,  then (17) gives z as an 
implicit (I-dependent) function of s via 

A + B s  
u(z)=- 

C + D s  

for constants A, B, C and D satisfying A D  - BC # 0. Rewriting (10) as 

(19) 

and noting that $ contains a pair of arbitrary constants, we see that the three-parameter 
family of Functions (18) defines the general integral of (10) at each value of I .  

Geometrically the variable s lives on the complex projective line P,C and different 
choices of basis of the solution space of (2) correspond to different choices of affine 
representation for P,C reiated by homographic transformation (14). As the independent 
variable in  the linear equations (12) z also lives on the projective line so that the ratio 
of solutions, u ( z ) ,  is a map from the Riemann sphere to itself. It will be in general 
multivalued and only locally holomorphic. U is labelled by the projective invariant I. 
Equation (18) gives the variation of x l y  as a function of t. $ ( z )  can be reconstructed 
from U using the classical formulae for independent solutions 

d r  
ds  
--I 2 - 2 2  h ( z ;  I ) $ 2 ( z )  

and combined with the relation x$ =x2 ,  which follows from (13) and the definitions 
of the barred variables, to obtain for each value of I the general trajectories of solutions 
to (1). 
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In [7] the linearization is obtained through a systematic search for time-dependent 
integrals of the Ermakov system using a purely algebraic approach. Because the result 
is expressed in a form not obviously compatible with that summarized above we here 
make clear the connection. 

The quantities (using our notation) 

where i, j take the values 1, 2 and the +, are linearly independent solutions to the 
second of equations (121, are shown to be functionally independent invariants for the 
Ermakov system (1) up  to a single functional relation 

Writing the z-derivative in (21) as a t-derivative we find 

The projective variables s, = x ; f x ,  where T= 1 ,  2 as i = 2 ,  1 ,  respectively, are now 
defined so that d/ds, = x: d/dt. Then (23) can be integrated to give 

y ( t ) = c l , , x i + c , , x , ) * ~ '  (24) 

for constants c,,. We recognize this as (13), using the definition of the barred variables. 
Equation (24) consists of four equal expressions from which it follows that the cy are 
known from the I, and one obtains 

Then the Wronskian relation (4) between x, and x2 yields (22), and (24) can be written 
as 

- y ( i ) x ,  - *(i)x, 
y ( O =  

1 , 1 ' P 2 - 1 , 2 ' P ,  1 2 2 ' P , - 1 2 1 ( P 2 '  

Multiplying by z and using the fact that 'p = zJ, we obtain the corresponding expression 
for x( t ) ,  

in terms of a basis $, , 
implies a relation of the form (181, 

of solutions to the first of equations (12). Equation (27) also 

So the invariants I and I, are explicitly seen to be the constants of integration 
arising through linearization and, as  they must be, the four independent constants of 
integration present in the general solution. Equations (26) ,  (27) and (21) give a 
convenient representation (locally) of the general solution to ( 1 ) .  
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It is apt to regard these equations as nonlinear superposition formulae for the 
general solution of ( I )  in terms of the general solution of the time-dependent harmonic 
oscillator. The superposition law will be rational, algebraic, etc., according to the 
character of the function u ( z ) ,  the character of which alters, in general, with changes 
in the value of I. 

As a closing remark to this section let us put (12) into a more evocative form by 
introducing a new variable T defined, following [3], by dT=y-'dt. Then we obtain 

where G(T) = g ( z ( ~ ) ) ,  Z(T) being the solution t o  the nonlinear oscillator 

It is easy to choose forms for f and g which make (29) and (30) into well-known 
equations, for instance, Lami's equation and the equation for the Weierstrass @- 
function. 

3. Singularity structure 

In this section we discuss the analytic inversion of the linearization near-ordinary and 
regular singular points of the linearized equations. 

Suppose firstly we are at an ordinary point in both cases. Then x,(I), x,(t), $ , ( z )  
and + 2 ( z )  have local analytic expansions near !he ordinary poin! (ta,  z0); Define 
s=x , /x2 ,  s'=x,/x,,  and u'=Jr2/JII.  Since t,,z,is an ordinarypoint, zeros 
of xI and x2 are simple and do not coincide in a neighbourhood of 1,; likewise for $I  

and g2 in a neighbourhood of z". From (18) we have, without loss of generality, 

.(z) = s( t )  u ' ( z ) = s ' ( 1 )  (31) 
on the patches s # 00 and s ' f  m of P,@ respectively. Hence the zeros of $ l (z )  coincide 
with those of x,(t) and those of JIZ(z) with those of x 2 ( f ) .  Hence we may invert (31)  
to obtain z = f (  t ) ,  locally analytic, with zo = f (  lo). Then 

and 

define locally analytic functions. A more cumbersome argument to this effect is given 
in [4]. Note that z =0, 00 are bound not to be ordinary points of both equations (12) 
so that z( tJ  ZO, m and ~ ( t ) ,  y(1) do not cross the x-, y-axes for I in the relevant 
neighbourhood of to. 

Suppose now that to is an ordinary point but that zO is a regular singular point, $I 
having exponents U ,  and v2 hut no term involving logarithms. Then there exist linearly 
independent solutions, 

$,( z) = ( 2  - 20)  w, ( 2 )  i = l , 2  (34) 
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where the $j are analytic near and non-vanishing at z,,. Put S = U, - u 2 ,  Then, by (18), 

u ( z )  = (2 - Z o ) R @ ( z )  (35) 

@ being analytic near and non-vanishing at zo .  Assume without loss of generality that 
S > 0. Certainly S Z 0 or we would have logarithms. We may invert ( IS) ,  making a 
choice of branch, to obtain an expansion for z in  terms of the variable w = s'/', s( to)  = 0 
for suitable x I ,  x2: 

Z=Zo+W'5 , (W)  (36) 

where 6 is analytic and non-vanishing at w = 0. So 

X ( f ) = X ~ ~ I s X ; " ' / * X ( w ( f ) )  (37) 

where x , ( to )  = 0. Similarly 

y(f) =x;J"x ;""" (w( t ) )  (38) 

where X I  Y - r z ,  as 1 - r  fo. Equations (37) and (38) describe the leading (movable) 
singularity of the solution. The monodromy of the singularity is determined by the 
ratio .,/U2 of the exponents at the linearized singularity 

X ( t ) ,  Y ( t )  = ( t -  (39) 

where p=(l-u, /v2)- ' .  In the case of an elementary regular singular point U,=+, 

u2 = 0, so p = 0,s = f  and x ( f )  and y ( t )  are analytic functions of (x,/xJ2 not vanishing 
at f = fa.  In this case the singularity evaporates [6] .  

If the linear equations (12) are Fuchsian (all singular points, including the point 
at infinity, if singular, are regular singular points) then, in the absence of logarithms, 
we can carry through the above analytic inversion prncedure to obtain the genera! 
solution to (1) together with a description of its singularities. The character of the 
singularities may or may not vary with I. 

Similar arguments to those presented here will apply when I, is a regular singular 
point of (2) and when both f, and zo are regular singular points. However, since the 
solution of (2) is a problem independent of the form of the functions J and g which, 
through the autonomous form, characterize whole classes of systems (1). we regard 
this problem as subsidiary and the above discussion of singularities only of (12) 
sufficient. 

In the case that the singularity at z, in (12) is an irregular one the functions $,(z) 
are single valued but no longer analytic at zo. One would expect this situation to reflect 
itself in movable essential singularities in the general solution x ( f ) ,  y ( f )  but this requires 
further investigation. 

4. Rational Ermakov systems of Fuchsian type 

We take J and g to be rational functions such that h2(r;  I)  is also rational and free 
of logarithms (i.e. z ~ ' J ( z ) - z g ( z )  is free of simple poles). Define h 2 =  8 H .  Then 

P 
H = I + -  

Q (40) 

P and Q being coprime polynomials in the variable z. Their zeros are fixed (independent 
of the value of I). The polynomial P +  IQ has but simple poles, except at discrete 
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values of I. If this was not the case both it and its derivative with respect to I must 
vanish for some z = ~ ( 1 ) .  which contradicts the coprimality of P and Q. The rational 
functions P J Q  and g determine f and we thus seek conditions upon them that, for all 
uolues of I, the linearization (12) is a pair of Fuchsian equations. Since 9 and $ in 
(12) are related by 'p = z$ it suffices to choose the simpler of the two equations, that 
for 9, which in terms of H is written as 

2Hq"+H'q'+gp=O (41) 

dJdz now denoted by a prime. 
The (semi)canonical form of a second-order ordinary differential equation, 

9"+p9'+9p = o  (42) 

is defined to be 

@" + J+ = 0 (43) 

J=q- ip ' - '  4P (44) 

where 

is the (relative projective) invariant of (42). This invariant transforms under a change 
of independent variable z + Z ( z )  as 

I +  J ( z ) z ' ~ + ~ ( z ,  Z) (45) 

where 
p 3 z " 2  

{Z,z}=-- - -  
Z' 2 2'2 

is the Schwarzian derivative of Z with respect to z. The invariant then transforms 
homogeneously under homographic (projective) transformations and only under such 
transformations. 

The Fuchsian class of second-order equations is given by (42) with p and 9 of the 
forms 

where z, # z, for i # j. The class is characterized by the property that every singular 
point, including the point at infinity, if singular, is a regular singular point. Some or 
all of the p ,  and 9, may take the value zero, the point being that the poles of p (4) 
are of order at most one (two) and finite in number. 

It is easy to see using (45) and the invariant constructed from (47) that the Fuchsian 
class is preserved under ratiorial transformations z+  Z ( z ) .  

Our requirement is that the invariant for (411, namely 

1 g I H" 3 H'2 
2 H  4 H  1 6 H 2  

J f-- 

be of the form of 9 in (47) for all values of I. It is easy to see that the terms in (48) 
which involve derivatives of the rational function H satisfy the requirement whatever 
the value of I .  Poles will be present at the zeros of Q and P+ IQ. 
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Singularities are of fhree kinds: those whose location in the z-plane does not depend 
on the value of I (the fixed singular points), those whose location changes with the 
value of I (the movable singular points), and those which arise as confluences of 
movable singular points for isolated values of I (we will also call these fixed). 

Now consider a value of I for which P + IQ separates into linear factors, 
I m 

P+ I Q = n  ( z  - U , )  Q = n ( z  - b , )  (49) 
I I 

where the K, are arbitrary, strictly positive integers. Then the remaining term in J is 

sQ J =  '- 2( P+ I Q )  

where g and Q are both I independent so that the I movable zeros of P+ IQ all give 
rise to poles of the first order. Put 

zr 
A II;" ( z -  b , )2  sQ = 

Here r and A are coprime polynomials. A, but not necessarily r, is to be coprime 
to Q and must have zeros of order at most two. Put A=A,,A: where A ,  and A> are 
separable and coprime. In order that Jo  satisfy the condition of regularity at z = w the 
degrees of r and A must satisfy the inequality 

(52) deg r - d e g  A <  2m + 1-2. 

Ja is now of the form 

r 
Jo = 

A o A : ( P + I Q ) n ( z - b , ) 2  (53) 

Next we must examine the requirement that Jo have at most second-order poles at 
values of I for which P + I Q  has zeros of order s +  1, s >  0. These zeros of P+ IQ are 
confluences of (simple) movable zeros. These fixed zeros are in one-to-one correspon- 
dence with those of the function 

(p'Q;y'p) S = Numerator (54) 

If Q has only simple zeros then S =  P Q -  Q'P (Note that zeros of P are zeros of H 
for I = 0 but that zeros of Q are not zeros of H for finite values of I.) If P+ IQ has 
a zero of order s+ I then S has a zero of order s. Since r and A are coprime we must 
demand that A ,  and P+ IQ be coprime for all I. But Au may have factors in common 
with P+ IQ for certain I. 

Regarding the zeros of S, either A. is coprime to S or one of its linear factors is 
repeated to some power in S. I n  the latter case this the factor must appear in r to at 
least the first power in order to cancel the high-order zero in the denominator. This 
contradicts the coprimality of r and A. Hence A" is coprime to S, and r must have a 
factor 

where the z;, i = 1,. , , , d are the zeros of S having orders si. One can say no more 
beyond this without knowing more about the forms of P and Q. 
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In summary: Rational Ermakov systems of Fuchsian type are characterized by 
polynomials P, Q, r and A which are arbitrary except insofar as they satisfy the 
following conditions: 

(i) (P, 0) = (I-, A )  = (0, A) = 1; 
(ii) d e g r - d e g A s m a x ( d e g  P,deg Q)+2(No. of zeros of Q ) - 2 ;  
(iii) A = &A;, Aa and A, separable; ( A , ,  P +  I Q )  = 1, V I ;  (A,,, S) = 1, where S =  

Numerator (PQ - Q'P)/Qz; 
(iv) Order s zeros of S are order s - 1 zeros of r. 

(Here (A,  E )  denotes the highest common factor of A and B.) 
A simpler class of systems is given by the choice A = 1: 

(ii)' degI 'smax(deg P,deg Q)+2(No. of zeros of Q)-2;  
(iv) Order s zeros of S are order s - 1 zeros of r. 
One way of saiisfying (iv) is to choose r = ?'Q - Q'P but ihis is unnecessarily 

heavy handed. A better way is to demand that P'Q-PQ' be separable, which in turn 
requires that P and Q have zeros of order at most two. 

Thus, the coupled Pinney system [6] is given by the choice f ( z )  = a -pz4 and 
g ( z )  = y - S Y 4  from which H = I - z 2 / 2 -  1/22, with U + S = p + y = 1 by suitably 
sca1ing.x and y .  So P = -1 - z4, Q = 22' and r = yz4- S. Both (i)' and (ii)' are easily 
seen to be satisfied and, since P Q  - Q'P = 241 - 2*) has only simple zeros, (iv) is 
trivially satisfied. We therefore define the class of generalized coupled Pinney equations 
defined by polynomials P, Q and r satisfying the following simple conditions: 

(i)' ( p ,  Q) = 1; 

6)' (P, Q ) =  1; 
(ii)' d e g r s m a x ( d e g  P,deg Q)+2(No. of zeros of 91-2; 
(iv)' P ' Q  - PQ' has only simple zeros. 

PUT Lnis suotiiass uriry parrwrx o u n ~ i u e r ~ e  01 I I I V V ~ U ~ C  brrigurariucb 1s p u ~ u r t :  anu LILC 

fixed singularities are these confluences together with the zeros of P and Q. 
Another subclass of interest, and to which some of the systems in the next section 

belong, arise by taking P = F", Q = G" where F and G are coprime and F'G - G'F 
has only simple zeros. r must have a factor of nF"~'F"-n(n-1)F"-2F'2. 

Finally, in order to apply the results of the previous section we need to check that 
logarithms d o  not arise. It is sufficient for this that the exponents of a singularity do  
not differ by an integer. In cases where the difference is an integer, no simple general 
criterion seems to exist and one must check the absence of logarithms in any specific 
case using an algorithm [ 5 ]  which is in general tedious. From (49) we see that the 
exponents of the movable singularities always satisfy the indicia1 equation 

r.. . 1 ~ 1 -  -~~L.1--- .-,.. ..: ..... :.- -... n ~. .P I,. .:--.~,..:.:.. :- ~ .... :L,- ... > _L. 

so that the difference is 4 and the singular point is an elementary singular point. But 
the exponents of the fixed singularities, in particular the confluences of movable 
singularities, depend upon the details of P, Q, r and A and the value of 1. 

5. Rational Ermakov systems of algebraic type 

Within the class of rational Ermakov systems of Fuchsian type will be a subclass with 
!he special property that their general solutions are algebraic functions of the solutions 
to the linear time-dependent oscillator. These will have linearizations whose general 
solutions are algebraic functions of z. Rational second-order Fuchsian equations having 
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algebraic integrals were classified by Klein [9] and are associated with finite subgroups 
of psI(2, C )  i.e. the symmetry groups of the regular three-dimensional solids. Hence 
we call such Ermakov systems polyhedral Ermakou systems. An incomplete set of 
examples is given in [IO]. In this final section we systematically isolate such systems. 

In order to have algebraic integrals for all I the invariant J given in (48) must be 
equivalent by a rational transformation to one of the following forms: 

where X = I ,  11, 111, IV or V and the integer exponents (U,, u2, U,) are given bp the 
following values: 

Case I 

Case I1 (2,2, N ) ,  dihedral 

Case 111 (2 ,3 ,3 ) ,  tetrahedral 

Case IV (2,3,4),  octahedral 

Case V (2 ,3 ,5 ) ,  icosahedral 

(N, 1, N), cyclic 

We have taken the liberty of writing case I in the form (57), contrary to usual practice 
[ l l ] ,  at the expense of spoiling the ascending order of the ui in that case. Thus we 
seek to find a rational function Z(z) such that 

1 g 1 H" 3 H'2 
' 2 H  4 H  1 6 H 2  

Jx( Z)Z"+${Z z }  = - --- -+- - 

for all I .  Z may, of course, and in fact will, depend upon I. 
First we analyse the structure of movable poles on the left- and right-hand sides 

The movable (and therefore simple) zeros of P +  I Q  give rise to movable poles of 
the second order on the right-hand side of (58) with coefficients equal to A. Poles on 
the left-hand side of (58) are also necessarily of second order and arise from zeros of 
Z, Z - 1 and Z' or form poles of Z. The coefficients of poles arising from zeros and 
poles of Z and Z - 1, of order a, have the form a(l-  for a E N  and U = ui some 
i =  1,2 or 3, whilst those arising from zeros of Z', of order T, have the form -($T+$') 
for T E N .  These statements are easily verified by direct calculation [ l l ] .  Now the 
equation 

of (58 ) .  

7 T 2  3 
( 5 9 )  

has no solution in N. Therefore 2' has no movable zeros. On the other hand the equation 

3 
16 

has solution n = u / 2 ~ N  only i f  U is even. Therefore movable zeros of Z, 2-1 and 
movable poles of Z can only occur for even values o f u l ,  U, and U, respectively. Moreover 
the degree of the zero or pole in Z is given by tuj .  

We proceed to study the five cases in order of complexity. 
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5.1. Cases I l l ,  V 

Since these cases are similar in having only one even exponent (U, = 2)  we may treat 
them together. All movable zeros of P +  IQ are zeros of Z - 1 so that Z = 1 + ( P  + I Q ) Z  
where Z has fixed poles and zeros. This Z must have only fixed zeros and poles, 
since u2 and uj are both odd, and this is sufficient for Z' to have only fixed zeros. 

We may writeZ = q ( l ) A ( z )  and i= c ( I ) B ( z )  where A and B arerational functions 
of z alone and q and functions of I alone. Then 7 and 5 are related by 

( - 'qA-  e-' - PB - I Q B  = 0. ( 6 1 )  

Since A, P and Q are not constant functions of z both e-' and e-'? must be linear 
functions of I with constant coefficients. Making such substitutions we obtain for Z 
a two-parameter family of solutions, homographic functions of I and w = P / Q ,  

k + l  w - /  
1+1 w - k  Zx.dw; I) =- __ 

where k # I and k, I # -I. If we make this substitution in ( 5 8 ) ,  using the transformation 
law ( 4 5 )  and noting that {Z, w }  = 0, we obtain 

g 1 w" 3 w'2 
- +--- 

w + l  4 w + l  1 6 ( ~ + 1 ) ~  

Note that this equation is no longer in exactly the canonical form (57) because the 
homographic transformation ( 6 2 )  has moved the singular point at infinity into the 
finite part of the complex line. Since U ,  = 2 the second-order pole at w = - I  cancels 
between the two sides as expected. Multiplying by w + I gives an equation linear in I 
and, because g must be independent o i  i, we may equate coeiiicients to zero to get an 
equation for w, 

1 1 

and an equation for g, 
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To solve (64), interchange dependent and independent variable to obtain 

- ( I +  ----- U; o: U )  l*) ( w - l ) ( w - k )  ] i = O  

which is precisely of algebraic type with a singularity at infinity in w. The homographic 
transformation which takes w +  $ such that i + O ,  k + m  and CO+ 1, 

reorders the poles into the standard form (57). 
There are limits of (62) which should be noted because they give rise to coalescence 

of singularities which are assumed distinct in  (64) and (65). Thus Z,,"(w; I ) = - w / I  
and ( 6 7 )  becomes a simple Euler equation, 

d2 i  1 1 -+- I - ,  - ; ( = O  
dw2 4( : j w  

with corresponding solution 

Similarly the choice Zo,-(w; 1 )  gives the same equations but with uj replacing U>. 

These are the type of the examples given in [IO].  
Returning to the general case, (64) is solved in terms of the relevant polyhedral 

functions [ l l ]  for w, i.e. P / Q ,  as a function of z, from which g(z) is found via (65) 
and hencef(z) from (7).  

5.2. Case 1V 

The movable zeros of P+ IQ are zeros of Z - 1 of order one or poles of Z - 1 of order 
two but never zeros of Z. Thus we consider a polynomial factorization of P +  IQ into 
factors F and G. If either of F or G has fixed zeros only then it must be constant, 
but coprimality of P and Q. This gives the possibilities F = 1, G = P+ I Q  and G = 1, 
F = P +  IQ. Assume then that all zeros of F and G are movable. Then Z- 1 = G-2Fz,  
where 2 is a rational function the positions of whose zeros and poles are I independent. 
We require that the zeros of Z and Z' be fixed. Of course the poles of either may be 
movable. 

Under this requirement there must exist rational functions A and B of z only, and 
functions 7 and 5 and I only, such that 

G2+ F.f = TA ( F z ) ' G  -2( F')G' = .$B (71) 
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the prime denoting a z-derivative, from which it follows that 

A'G-2AG'z ?-'<E 

(A-'/2G)'= -i7-1cA-'/2g 

and G is thus of the form 

(74) 
1 l  
2 7  

G =  - - - (H+A)A1l2  

where I? = H'A"' and A is a non-trivial function of I only, in order that G has movable 
zeros. G is a polynomial and therefore A =  C' where C is a polynomial in z only. 
Also G has no fixed zeros and so HA'/'= D is a polynomial in z only coprime to C. 
Thus 

These functions satisfy the requirements on Z and Z'. We have now to make them 
satisfy the factorization P+ IQ ='FG. 

Firstly, unless A = *21-'71J/', the expression for FZ has no fixed zeros and 5 must 
be 1.  In either of these exceptional cases, 2 = D, and the product FG has three terms 
linearly independent in I which cannot match P+ IQ. Thus we have 

If the coefficients are not all linear functions of I then the polynomials D', D'C, etc., 
must be linearly dependent but this contradicts the coprimality of D and C. But it is 
not difficult to show that the coefficients cannot all be linear in I given that A must 
have some I dependence. 

This leaves us with only the possibilities F = 1, G = P + IQ and F = P+ IQ, G = 1. 
In the former case one cannot satisfy the first equation of (71) and the latter case is 
just that which obtained for cases I11 and V above. The same formulae then apply but 
with the new values of the exponents. 

5.3. Case I 

If N is odd there are no examples. 
If N = 2 n  we must make a factorization FG of P+ IQ and write Z- 1 = ( F / G ) " Z .  

Now 2 and Z' must have fixed zeros and this can only be achieved for n = 1.  A similar 
argument to the previous case leads us to F = 1 and G = P+ IQ or G = 1 and F = P + IQ 
or to G =  - 'I- ' l (D+wAj,  F =  ' I - ' c ( ~ + ~ A )  with A - f i  =<- 'v2  where, as before, D 
and A are coprime polynomials in z only and greek letters are functions of I only. It 
remains to fulfil the factorization condition 

(77) P+ I Q =  - > ( D + p A ) ( D + A A ) .  c2 
'I 
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This time, for certain forms of P and Q, the solution set is non-empty. For either 
p + A  and ph  are rational linear functions of f or the polynomials D 2 ,  DC and C' 
are linearly independent over C which contradicts coprimality. p and A are then the 
zeros of a quadratic form whose coefficients are linear in I, 

(78) (ao+ boI)5'+2(a, + b , I ) t + ( a , +  b,I)  

provided P and Q are quadratic forms in the arbitrary polynomials D and A, 

A simple example arises if P = Pi and Q = - Q f ,  i.e. F =  P,  +a Q 1 ,  G = P, -a 9, .  
Thus we arrive at three cases: 
(i) Z = 1 + ( P +  I Q ) i  in which case we can return to the path followed in cases 

I11 and V. 
(ii) Z = I + ( P + I Q ) - l Z ,  and the usual type of calculation leads to Z =  

( k + I ) ( w - / ) ( k - / ) - ' ( w + f ) - '  where k and l may take the value infinity. Solving (58) 
in the same way as before, 

P = -a,D'+ 2a ,DA - a,A2 Q = -b,D2 + 2 6 , D A  - b,A2. (79) 

1 3 W f 2  
0 g = w"-4 w-k 3 w'2 

(w, z } + - - -  
8 ( w -  k ) 2 -  

which are easily solved for w and g. 

which may take the value infinity. Solving (58) leads us to the equation for U, 
(iii) z = ( ~ ~ - A ) ( ~ + k ) ( k - A ) - ' ( u + p ) - '  where o = D / A  and k is a parameter 

where we have written Q as -b ,u2+2b1u-b2.  This equation, treated exactly as (64) 
was, leads us to a second-order equation with invariant J , ( N  = Z), singularities at the 
zeros of Q in the o-plane (none at a), solvable via cyclic polynomials. Given this u ( z )  
and writing w ( u )  = P / Q ,  a ratio of quadratic functions, we find for g, 

uo and uI being the zeros of Q ( u ) .  

5.4. Case If 

Here the subcases N even and N odd must be treated quite distinctly. 
Firstly suppose that N is odd. Then the movable zeros are zeros of Z and Z - 1 

the poles being fixed. So Z = FqA and Z = 1 + G@ where FG is a factorization of 
P +  IQ and A and B are rational functions of z alone. Then the usual argument, in 
addition to the cases F = P +  IQ, G = 1 and G = P +  IQ, F = 1 as before, yields 

where P and Q are quadratic in the polynomial u ( z )  

P = p o d  - 2p,u + p 2  Q=qou2-2qiu+q2 (84) 
and A and 5 are the zeros (in the u-plane) of P +  fQ. As a function of z, U must satisfy 
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which is equivalent to a second-order equation having singularities at the roots of Q 
and at infinity and solvable in terms of dihedral polynomials. So, given u ( z )  and 
writing w = P / Q  as normal, 

This brings us finally to the case when N is even: N = 2n. Here the zeros of P + IQ 
can be distributed between the zeros and poles of Z and Z - 1. Suppose we have a 
factorization P +  IQ = FGH, then we will have 

(87) Z = vAH-"F = 1 + @H-"G. 

As before we may have one of F, G and H equal to unity, with n = 1. Thus if 
H = 1, Z will have the form (83) ,  if F =  1, it will have the form given under the cyclic 
case and, if G = 1, Z - 1 will have this form. We may also have F = P +  IQ, G = 1, 
H = 1 and so on. These all lead to similar formulae to those obtained already with the 
same forms for P and Q but new values of the exponents. 

The new possibility which arises in this case is that P and Q are homogeneous 
cubic functions of arbitrary polynomials in z, 

P =poD'-3p,D2A +3p2DA2 -p3A3 Q = qaD3 -3qlD'A+3q2DA2 - q3A3 (88) 
with n = 1 and Z given by 

where s = D / A  and the A ,  are the roots of the cubic equation 

( P o +  r d A 3  + 3 ( P , +  IqB)A2+ 3 ( P 2 +  Iq2)A + ( P ,  + Iq,) =O. (90) 

This appears to be the most general solution to the criteria satisfied by Z, but to 

Then we find that 
show that this is so is not as easy as in the previous cases. 

(z,s}=- f6( 3 - - 2 -  ; (22) 
where Q =  q,s'-3q,s2+3q,s- q3 has singularities at the roots of Q in the s-plane and 
is solvable in terms of dihedral polynomials. Putting P =  wQ, as usual we obtain for 
g the expression 

I g = z W , S " - ~ S ~ ~  ( w,, + 2w 

5.5. Summary 

In summary, then, we conclude that in each of the cases I-V one has a number of 
subcases corresponding to the number of even exponents. P and Q can be polynomial 
functions, of degree less than or  equal to this number, in other polynomials which are 
themselves constructed from solutions to linear, second-order ODE$ (independent of 
I) belonging to the relevant class (I-V). The rational function 2 is in each case a 
homographic transformation in these polynomials. The general integral of such a 
Ermakov system will be algebraic in solutions of the linear time-dependent 
oscillator (2). 
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